Unsolved Problem Q101003



Scholz's conjecture


Statement:

Let \(l(n)\) be the length of the shortest addition chain producing \(n\). Then \((2^n-1)\leq n-1+l(n)\).



Author  Date Published 
     
Arnold Scholz  1937 


Partial Results:

Clift in 2011 [2] showed that the conjecture is true for all \(n<5784689\).



Related Problems:


References:

[1] Scholz, Arnold (1937), "Aufgaben und Lösungen, 253", Jahresbericht der Deutschen Mathematiker-Vereinigung, 47: 41–42, ISSN 0012-0456



[2] Clift, Neill Michael (2011). "Calculating optimal addition chains". Computing. 91 (3): 265–284. doi:10.1007/s00607-010-0118-8.



[3] Brauer, Alfred (1939), "On addition chains", Bulletin of the American Mathematical Society, 45 (10): 736–739, doi:10.1090/S0002-9904-1939-07068-7, ISSN 0002-9904, MR 0000245, Zbl 0022.11106



[4] Guy, Richard K. (2004). Unsolved problems in number theory (3rd ed.). Springer-Verlag. pp. 169–171. ISBN 978-0-387-20860-2. Zbl 1058.11001.



Keywords:

addition chain;