If \(A^x+B^y=C^z\) where \(A, B, C, x, y, z\) are non-zero integers with \(x, y, z \geq 3 \) then \(A, B, C \) have a common prime factor.
-Equivalently-
The equation \( A^x+B^y=C^z \) has no solutions in the non-zero integers and pairwise coprime integers \(A, B, C\) provided \(x, y, z \geq 3 \).
Author | Date Published | Prize | Paid By |
Andrew Beal | 1993 | $1,000,000 | Andrew Beal (AMS) |
ABC Conjecture
Fermat-Catalan Conjecture
Lander, Parkin, and Selfridge conjecture
[1] Wiles, Andrew. “Modular Elliptic Curves and Fermat's Last Theorem.” Annals of Mathematics, vol. 141, no. 3, 1995, pp. 443–551. JSTOR, www.jstor.org/stable/2118559. Accessed 24 May 2021.
[2] Poonen, Bjorn (1998). "Some diophantine equations of the form \(x^n + y^n = z^m\)". Acta Arithmetica (in Polish). 86 (3): 193–205. doi:10.4064/aa-86-3-193-205. ISSN 0065-1036.
[3] Bruin, Nils (2003-01-09). "Chabauty methods using elliptic curves". Journal für die reine und angewandte Mathematik (Crelles Journal). 2003 (562). doi:10.1515/crll.2003.076. ISSN 0075-4102.
[4] Bruin, Nils (2005-03-01). "The primitive solutions to \(x^3 + y^9 = z^2\)". Journal of Number Theory. 111 (1): 179–189. arXiv:math/0311002. doi:10.1016/j.jnt.2004.11.008. ISSN 0022-314X.
[5] Brown, David (2009). "Primitive Integral Solutions to \(x2 + y3 = z10\)". arXiv:0911.2932
[6] Freitas, Nuno; Naskręcki, Bartosz; Stoll, Michael (January 2020). "The generalized Fermat equation with exponents 2, 3, n". Compositio Mathematica. 156 (1): 77–113. doi:10.1112/S0010437X19007693. ISSN 0010-437X.
[7] Siksek, Samir; Stoll, Michael (2013). "The Generalised Fermat Equation \(x2 + y3 = z15\)". Archiv der Mathematik. 102 (5): 411–421. arXiv:1309.4421. doi:10.1007/s00013-014-0639-z.
[8] Bruin, Nils (2005-03-01). "The primitive solutions to \(x^3 + y^9 = z^2\)". Journal of Number Theory. 111 (1): 179–189. arXiv:math/0311002. doi:10.1016/j.jnt.2004.11.008. ISSN 0022-314X.
[9] "The Diophantine Equation" (PDF). Math.wisc.edu. Retrieved 2014-03-06.
[10] Bennett, Michael A.; Chen, Imin (2012-07-25). "Multi-Frey ℚ-curves and the Diophantine equation \(a^2 + b^6 = c^n\)". Algebra & Number Theory. 6 (4): 707–730. doi:10.2140/ant.2012.6.707. ISSN 1944-7833.
[11] Chen, Imin (2007-10-23). "On the equation \(s^2+y^{2p} = \alpha^3\)". Mathematics of Computation. 77 (262): 1223–1228. doi:10.1090/S0025-5718-07-02083-2. ISSN 0025-5718.
[12] Bennett, Michael A.; Chen, Imin; Dahmen, Sander R.; Yazdani, Soroosh (June 2014). "Generalized Fermat Equations: A Miscellany" (PDF). Simon Fraser University. Retrieved 1 October 2016.
[13] Frits Beukers (January 20, 2006). "The generalized Fermat equation" (PDF). Staff.science.uu.nl. Retrieved 2014-03-06.
[14] Siksek, Samir; Stoll, Michael (2012). "Partial descent on hyperelliptic curves and the generalized Fermat equation x^3 + y^4 + z^5 = 0". Bulletin of the London Mathematical Society. 44 (1): 151–166. arXiv:1103.1979. doi:10.1112/blms/bdr086. ISSN 1469-2120.
[15] Poonen, Bjorn (1998). "Some diophantine equations of the form x^n + y^n = z^m". Acta Arithmetica (in Polish). 86 (3): 193–205. doi:10.4064/aa-86-3-193-205. ISSN 0065-1036.
[16] Bennett, Michael A.; Chen, Imin; Dahmen, Sander R.; Yazdani, Soroosh (June 2014). "Generalized Fermat Equations: A Miscellany" (PDF). Simon Fraser University. Retrieved 1 October 2016.
[17] Dahmen, Sander R.; Siksek, Samir (2013). "Perfect powers expressible as sums of two fifth or seventh powers". arXiv:1309.4030
[18] H. Darmon and L. Merel. Winding quotients and some variants of Fermat’s Last Theorem, J. Reine Angew. Math. 490 (1997), 81–100.
[19] Anni, Samuele; Siksek, Samir (2016-08-30). "Modular elliptic curves over real abelian fields and the generalized Fermat equation \(x^{2ℓ} + y^{2m} = z^p\)". Algebra & Number Theory. 10 (6): 1147–1172. arXiv:1506.02860. doi:10.2140/ant.2016.10.1147. ISSN 1944-7833.
[20] Kraus, Alain (1998-01-01). "Sur l'équation \(a^3 + b^3 = c^p\)". Experimental Mathematics. 7 (1): 1–13. doi:10.1080/10586458.1998.10504355. ISSN 1058-6458.
[21] Darmon, H.; Granville, A. (1995). "On the equations \(zm = F(x, y) and Axp + Byq = Czr\)". Bulletin of the London Mathematical Society. 27 (6): 513–43. doi:10.1112/blms/27.6.513.
[22] Mihăilescu, Preda (2005). Reflection, Bernoulli Numbers and the Proof of Catalan's Conjecture. European Congress of Mathematics. Stockholm, Sweden: European Mathematical Society. pp. 325–340. doi:10.4171/009-1/21. MR 2185753
[23] Wacław Sierpiński, Pythagorean Triangles, Dover, 2003, p. 55 (orig. Graduate School of Science, Yeshiva University, 1962).
[24] Norvig, Peter. "Beal's Conjecture: A Search for Counterexamples". Norvig.com. Retrieved 2014-03-06.
Algebraic Number Theory; Beal Conjecture; Diophantine Equations