Unsolved Problem Q107002



Erdős–Turán conjecture


Statement:

If the sum of the reciprocals of a set of positive integers diverges, then the set contain arbitrarily long finite arithmetic progressions.

~Formally~

If \(A\) is a large set in the sense that $$ \sum_{n \in A}{\frac{1}{n}}=\infty $$ then \(A\) contains arithmetic progressions \( \{a, a+c, \ldots , a+kc\}\subset A \) for arbitrarily large \(k\).



Author  Date Published  Prize  Paid By 
     
Paul Erdős, Pál Turán [1]   1936  $5,000  Erdős


Partial Results:



Related Problems:


References:

[1] P. Erdős and P. Turán, On some sequences of integers, J. London Math. Soc. 11 (1936), 261–264.



Keywords:

Erdős–Turán conjecture; arithmetic progressions