Author | Date Published | |
Hadwider and Edward Nelson | 1944 |
The chromatic number of \(\mathbb{R}^n \) is bounded by \(n+2\leq \chi \left(\mathbb{E}^n \right)\leq \lfloor{2+\sqrt{n}}\rfloor^n \)
[1] P. Erdős and N. G. de Bruijn. A colour problem for infinite graphs and a problem in the theory of relations. Indag. Math., 13:371–373, 1951.
[2] R. L. Graham. Open problems in Euclidean Ramsey theory. Geocombinatorics, XIII(4):165–177, April 2004.
[3] R. L. Graham. Euclidean Ramsey theory. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 11, pages 239–254. CRC Press LLC, Boca Raton, FL, 2nd edition, 2004.
[4] Joseph O’Rourke. Computational geometry column 46. Internat. J. Comput. Geom. Appl., 14(6):475–478, 2004. Also in SIGACT News, 35(3):42–45 (2004), Issue 132.
[5] M. S. Payne. Unit distance graphs with ambiguous chromatic number. arXiv:0707.1177v2 [math.CO], 2009.
[6] The Open Problems Project, Erik D. Demaine, Joseph S. B. Mitchell, Joseph O’Rourke https://topp.openproblem.net/
Combinatorial Geometry; chromatic number; unit-distance graph